Selective Laser Melting of Molybdenum Alloy on Silicon Carbide Substrate
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Additive manufacturing (AM) technologies allow for the creation of components with greater design flexibility. The complexity in geometry and composition can enhance functionality, while parts made from multiple materials have the capacity to deliver improved performance. Nonetheless, most multimaterial printing methods are still in their infancy and face numerous challenges. Numerous materials require individual post-treatment, and some may not be compatible with each other regarding shrinkage, melting or sintering temperatures, and interactions. In this study, we introduce a technique for producing a metal–ceramic multimaterial prototype for electronic packages through powder-bed additive manufacturing technology. Silicon carbide-based ceramic substrate was manufactured by selective laser melting, on which molybdenum-based conductive tracks were printed. The results indicated that the SiC-based samples exhibit a relatively uniform microstructure with homogeneously distributed porosity. Mo-based powder containing 5% silicon was successfully SLM-ed on the SiC layer. The microstructural and chemical analyses show that Mo reacted with Si during selective laser melting, resulting in formation of molybdenum silicides. The surface of Mo-based layer surface is smooth; however, there are few cracks on it. The Vickers hardness was measured to be 7.6 ± 1 GPa. The electrical resistivity of the conductive track is 2.8 × 10−5 Ω·m.