High Sensitivity Design for Silicon-On-Insulator-Based Asymmetric Loop-Terminated Mach–Zehnder Interferometer

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This work presents a novel design for an asymmetric loop-terminated Mach–Zehnder interferometer (a-LT-MZI) based on a silicon-on-insulator (SOI) platform, tailored for refractive index (RI) sensing applications. A significant advantage of incorporating the Sagnac loop into the MZI configuration is its ability to reduce the interferometer’s effective length by half, offering a more compact design. This makes it ideal for integration into miniaturized optical devices, enabling space-efficient configurations without compromising precision or performance. The proposed device, featuring a pathlength difference (∆L) of 24.35 µm demonstrates a sensitivity of 261 nm/RIU, which is further enhanced to 510 nm/RIU by incorporating a subwavelength (SWG) waveguide in the asymmetric sensing arm. This modification boosts light–matter interaction, resulting in a larger shift in the interference fringes and significantly improving the sensor’s performance.

Article activity feed