Mechanical Characterization and Modeling of Glass Fiber-Reinforced Polyamide Built by Additive Manufacturing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Additive manufacturing (AM) is an emerging technology with the greatest potential impact on many engineering applications. Among the AM technologies, material extrusion is particularly interesting for plastic components due to its versatility and cost-effectiveness. There is, however, a limited knowledge of design methods to predict the mechanical strength of parts built by material extrusion. The materials are polymers, sometimes also reinforced, and deposited in layers like in laminated composites. Therefore, the mechanical behavior and strength can be characterized and modeled with methods already known for composite materials. Such tools are the classical lamination theory (CLT) and the failure criteria for composites. This paper addresses an analysis of a composite material made of long-fiber glass in a polyamide matrix built by additive manufacturing; in this relatively new technique, a continuous fiber is inserted between layers of polyamide deposited from a wire with a fused filament fabrication (FFF) 3D printer. The mechanical behavior was studied from tensile tests that were carried out to demonstrate the feasibility of modeling with the mentioned tools, and the material properties for predicting the stiffness and strength of components built with that technique were identified. The results show that the classical models for the mechanical behavior of composite materials are well-suited for this material to predict the influence of the main building parameters.

Article activity feed