Development of Cost-Effective Sn-Free Al-Bi-Fe Alloys for Efficient Onboard Hydrogen Production through Al–Water Reaction

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Leveraging the liquid-phase immiscibility effect and phase diagram calculations, a sequence of alloy powders with varying Fe content was designed and fabricated utilizing the gas atomization method. Microstructural characterizations, employing SEM, EDS, and XRD analyses, revealed the successful formation of an incomplete shell on the surfaces of Al-Bi-Fe powders, obviating the need for Sn doping. This study systematically investigated the microstructure, hydrolysis performance, and hydrolysis process of these alloys in deionized water. Notably, Al-10Bi-7Fe exhibited the highest hydrogen production, reaching 961.0 NmL/g, while Al-10Bi-10Fe demonstrated the peak conversion rate at 92.99%. The hydrolysis activation energy of each Al-Bi-Fe alloy powder was calculated using the Arrhenius equation, indicating that a reduction in activation energy was achieved through Fe doping.

Article activity feed