Therapeutic Impact of Vericiguat on Ventricular Remodeling in a Pressure-Overload Heart Failure Model

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pressure-overload-induced heart failure is characterized by pathological ventricular remodeling, including hypertrophy and fibrosis, which compromise cardiac function and worsen outcomes. Vericiguat, a soluble guanylate cyclase (sGC) stimulator, has shown therapeutic promise in heart failure with reduced ejection fraction (HFrEF). This study evaluated its antihypertrophic, antifibrotic, and metabolic effects in a murine pressure-overload model. Male C57BL/6 mice (~25 g) underwent transverse aortic constriction (TAC) and received oral Vericiguat (10 mg/kg/day) for 14 days. Cardiac hypertrophy was assessed by gross morphology and heart weight; fibrosis was quantified using Masson’s trichrome and Picrosirius red staining. Collagen deposition and wall stress indices were measured by image analysis. Proteomic profiling of fibroblast- and myocyte-enriched tissues identified differentially expressed proteins (DEPs) across metabolic, structural, mitochondrial, and signaling pathways. Vericiguat significantly reduced heart weight and attenuated TAC-induced hypertrophy. Histological staining revealed marked reductions in myocardial fibrosis and collagen accumulation in the Vericiguat-treated TAC group compared to untreated TAC controls. Quantitative analysis demonstrated improved wall stress indices. Proteomic data showed consistent modulation of DEPs, with restoration of mitochondrial and energy-regulating proteins suppressed by TAC, indicating enhanced bioenergetic support. Collectively, Vericiguat mitigates pressure-overload-induced remodeling through coordinated antihypertrophic, antifibrotic, and metabolic reprogramming mechanisms. These findings support its potential as a therapeutic strategy for heart failure and warrant further clinical investigation.

Article activity feed