Inflation Forecasting: LSTM Networks vs. Traditional Models for Accurate Predictions
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study investigates the effectiveness of neural network models, particularly LSTM networks, in enhancing the accuracy of inflation forecasting. We compare LSTM models with traditional univariate time series models such as SARIMA and AR(p) models, as well as machine learning approaches like LASSO regression. To improve the standard LSTM model, we apply advanced feature selection techniques and introduce data augmentation using the MBB method. Our analysis reveals that LASSO-LSTM hybrid models generally outperform LSTM models utilizing PCA for feature selection, particularly in datasets with multiple features, as measured by RMSE. However, despite these enhancements, LSTM models tend to underperform compared to simpler models like LASSO regression, AR(p), and SARIMA in the context of inflation forecasting. These findings suggest that, for policymakers and central bankers seeking reliable inflation forecasts, traditional models such as LASSO regression, AR(p), and SARIMA may offer more practical and accurate solutions.