Decline Trends of Chlorophyll-a in the Yellow and Bohai Seas over 2005–2024 from Remote Sensing Reconstruction

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chlorophyll-a (Chl-a) concentration is a key indicator of coastal ecosystem health, reflecting both primary productivity and the ecosystem’s response to climate change and human activities. This study quantifies long-term Chl-a trends in the Yellow and Bohai Seas using a multi-source remote sensing reconstruction dataset generated with deep learning algorithms. Quantile regression was applied to assess changes across the 75th, 50th, and 25th percentiles, and environmental drivers—including sea surface temperature, mixed layer depth, wind speed, and sea surface height anomalies—were evaluated in representative regions such as estuaries, aquaculture zones, and offshore waters. From 2005 to 2024, Chl-a concentrations declined across the 75th, 50th, and 25th percentiles, with rates of −4.82 × 10−3, −4.50 × 10−3, and −4.09 × 10−3 mg·m−3·a−1, respectively (where “a” denotes year). The decline also showed strong seasonal differences, with summer decreases (−0.0638 mg·m−3·a−1) substantially greater than winter (−0.04 mg·m−3·a−1). Spatially, the decline was more pronounced in high-concentration nearshore waters, with rates of −0.0283 mg·m−3·a−1 in the Qinhuangdao region, compared to −0.0137 mg·m−3·a−1 in deeper offshore waters. Mixed-layer depth and wind speed emerged as the primary physical controls, with nearshore declines driven by enhanced vertical mixing and offshore changes dominated by mesoscale oceanic processes. These findings provide new insights for modeling and managing coastal ecosystems under combined climate and anthropogenic pressures.

Article activity feed