A Reliability Assessment of a Vessel’s Main Propulsion Engine
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Ocean-going vessels rely on marine diesel engines, referred to as the main engine, to carry the vessel’s load and ensure safe travel. These engines play a critical role, as their operation impacts on all aspects of the vessel’s functionality. To meet increasing demands for extended run times while maintaining reliability, it is essential to address the risks of main engine failure. Previous studies have highlighted numerous accidents resulting from such failures. Consequently, the reliability of the main propulsion engine is a crucial component of safe vessel operation. This study addresses the lack of methodologies for predicting engine reliability using failure running hours (FRHs). A data-driven model was developed using FRH data collected from marine engineers during on-board maintenance operations. Additionally, fault tree analysis (FTA) was employed to calculate the reliability of individual subsystems and the overall main propulsion engine. The findings indicate that the lube oil system, freshwater cooling system, scavenge system, and fuel system reach 0% reliability at approximately 2000 h, 14,000 h, 2500 h, and 1400 h of operation, respectively. Additionally, the reliability of the main propulsion engine drops to 0% after around 900 h of operation. By incorporating this prediction model, ship operators can better schedule maintenance, significantly enhancing engine reliability and reducing maritime accidents. This approach contributes to safer and more efficient operations for commercial marine systems. This study represents a vital step toward improving the reliability of ocean-going vessels.