Impact of High-Concentration Biofuels on Cylinder Lubricating Oil Performance in Low-Speed Two-Stroke Marine Diesel Engines

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In this study, catering waste oil was blended with 180 cSt low-sulfur fuel oil (LSFO) to prepare biofuels with volume fractions of 24% (B24) and 50% (B50). These biofuels were evaluated in a MAN marine diesel engine under load conditions of 25%, 50%, 75%, and 90%. The experimental results showed that, at the same engine load, the use of B50 biofuel led to lower kinematic viscosity and oxidation degree of the cylinder residual oil, but higher total base number (TBN), nitration level, PQ index, and concentrations of wear elements (Fe, Cu, Cr, Mo). These results indicate that the wear of the cylinder liner–piston ring interface was more severe when using B50 biofuel than when using B24 biofuel. For the same type of fuel, as the engine load increased, the kinematic viscosity and TBN of the residual oil decreased, while the PQ index and the concentrations of Fe, Cu, Cr, and Mo increased, reflecting the aggravated wear severity. Ferrographic analysis further revealed that ferromagnetic wear particles in the oil mainly consisted of normal wear debris. When using B50 biodiesel, a small amount of fatigue wear particles were detected. These findings offer crucial insights for optimizing biofuel utilization and improving cylinder lubrication systems in marine engines.

Article activity feed