Networked Predictive Trajectory Tracking Control for Underactuated USV with Time-Varying Delays

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study explores the control framework for the trajectory tracking problem concerning unmanned surface vessels (USVs) in the presence of time-varying communication delays. To address the aforementioned problem, a novel networked predictive sliding mode control architecture is proposed by integrating a discrete sliding mode control technique and predictive control scheme. By leveraging a first-order forward Euler discretization approach, a discrete-time model of USVs was initially formulated. Then, a virtual velocity controller was developed to convert the position tracking into expected velocity tracking, which was achieved by utilizing a sliding mode control. Subsequently, a networked predictive control technique was performed to compensate for the time-varying delays. Finally, theoretical analysis and extensive comparative simulation tests demonstrated that the proposed control scheme guaranteed complete compensation for time-varying delays while ensuring the stability of the closed-loop system.

Article activity feed