Adaptive Normalization Enhances the Generalization of Deep Learning Model in Chest X-Ray Classification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study presents a controlled benchmarking analysis of min–max scaling, Z-score normalization, and an adaptive preprocessing pipeline that combines percentile-based ROI cropping with histogram standardization. The evaluation was conducted across four public chest X-ray (CXR) datasets and three convolutional neural network architectures under controlled experimental settings. The adaptive pipeline generally improved accuracy, F1-score, and training stability on datasets with relatively stable contrast characteristics while yielding limited gains on MIMIC-CXR due to strong acquisition heterogeneity. Ablation experiments showed that histogram standardization provided the primary performance contribution, with ROI cropping offering complementary benefits, and the full pipeline achieving the best overall performance. The computational overhead of the adaptive preprocessing was minimal (+6.3% training-time cost; 5.2 ms per batch). Friedman–Nemenyi and Wilcoxon signed-rank tests confirmed that the observed improvements were statistically significant across most dataset–model configurations. Overall, adaptive normalization is positioned not as a novel algorithmic contribution, but as a practical preprocessing design choice that can enhance cross-dataset robustness and reliability in chest X-ray classification workflows.

Article activity feed