Biocompatible Hybrid Surface Layers on Porous Magnesium Structures Fabricated by Spark Sintering

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

In this study, 3D Mg scaffolds were obtained by the spark plasma sintering (SPS), and a calcium phosphate coating was then obtained on the samples by the plasma electrolytic oxidation. A hybrid coating with vancomycin, zoledronic acid, and menaquinone MK-7 was formed to improve biocompatibility. The mechanical properties of the formed specimens were studied. According to XRD, XRF, SEM, EDS, and OSP studies obtained scaffolds have developed morphology and contain hydroxyapatite as well as bioactive substances. Formation of coatings improves the wettability of samples (contact angle decreases from 123.8 ± 3.1° to 26.9 ± 4.1°) and increases the surface roughness by more than 3 times. This makes them promising for use as a new generation of implantation materials. The results are important for the development of personalized implants with improved functional characteristics.

Article activity feed