ARGUS: An Autonomous Robotic Guard System for Uncovering Security Threats in Cyber-Physical Environments

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cyber-physical infrastructures such as hospitals and smart campuses face hybrid threats that target both digital and physical domains. Traditional security solutions separate surveillance from network monitoring, leaving blind spots when attackers combine these vectors. This paper introduces ARGUS, an autonomous robotic platform designed to close this gap by correlating cyber and physical anomalies in real time. ARGUS integrates computer vision for facial and weapon detection with intrusion detection systems (Snort, Suricata) for monitoring malicious network activity. Operating through an edge-first microservice architecture, it ensures low latency and resilience without reliance on cloud services. Our evaluation covered five scenarios—access control, unauthorized entry, weapon detection, port scanning, and denial-of-service attacks—with each repeated ten times under varied conditions such as low light, occlusion, and crowding. Results show face recognition accuracy of 92.7% (500 samples), weapon detection accuracy of 89.3% (450 samples), and intrusion detection latency below one second, with minimal false positives. Audio analysis of high-risk sounds further enhanced situational awareness. Beyond performance, ARGUS addresses GDPR and ISO 27001 compliance and anticipates adversarial robustness. By unifying cyber and physical detection, ARGUS advances beyond state-of-the-art patrol robots, delivering comprehensive situational awareness and a practical path toward resilient, ethical robotic security.

Article activity feed