Effects of Whole-Body and Lower-Body Cold-Water Immersion on Exercise-Induced Pain Score, Muscle Damage Indices, and Maximal Voluntary Isometric Contractions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: The aim of this study was to assess the effects of cold-water immersion (CWI) post-eccentric muscle contraction exercise on skin temperature, pain score, maximum voluntary isometric contraction (MVIC), muscle damage, and muscle mechanical properties. Methods: Twenty-seven male participants (age 20.6 ± 0.6; body mass 69.4 ± 8.1; body fat % 13.7 ± 4.3) were divided into three treatments: whole-body CWI treatment group (n = 9), lower-body CWI treatment group (n = 9), and control treatment group (n = 9). Results: MVIC did not show a significant interaction effect between group and time but demonstrated a significant main effect for time (p = 0.001). The pain scale demonstrated a significant interaction effect between group and treatment (p = 0.049), in addition to significant main effects for both time and treatment (both p = 0.001). While blood creatine kinase (CK) concentration revealed no significant interaction effect between group and time, a significant main effect was observed for time (p = 0.001). Blood lactate dehydrogenase (LDH) concentration showed both a significant interaction effect between group and time (p = 0.02) and a significant main effect for time (p = 0.001). The tensiomyography (TMG) results for Dm showed a significant interaction effect between group and treatment (p = 0.047), as well as a significant main effect for time (p = 0.001). Conclusions: Lower-body CWI is effective in reducing pain indices and blood LDH levels, a marker of muscle damage. It may serve as an effective method for preventing and minimizing pain and muscle damage, comparable to whole-body CWI.

Article activity feed