A Novel Framework for Optimizing Peri-Implant Soft Tissue in Subcrestally Placed Implants in Single Molar Cases: Integrating Transitional and Subcrestal Zones for Biological Stability

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: The peri-implant soft tissue seal is crucial for the long-term success of subcrestally placed implants (SPIs). However, conventional biologic width—now referred to as supracrestal tissue attachment (STA)—models, originally developed for natural teeth, fail to account for the three-dimensional nature of peri-implant soft tissue adaptation. This study introduces a novel framework integrating the concepts of the transitional zone (TZ) and subcrestal zone (SZ) to systematically optimize peri-implant soft tissue architecture. Methods: A mathematical model was developed to determine the optimal implant placement depth by incorporating the emergence angle (EA), soft tissue thickness (STT), and peripheral crestal offset (PCO). Additionally, a three-dimensional peri-implant soft tissue analysis (3DSTA) approach utilizing cone beam computed tomography (CBCT) imaging was implemented to evaluate peri-implant soft tissue adaptation and emergence profile design. Clinical parameters were analyzed to establish guidelines for optimizing SPI placement depth and peri-implant soft tissue stability. Results: This study introduces the concept of self-sustained soft tissue (SSST), a biologically functional structure composed of the TZ and SZ, which enhances peri-implant health and stability. The proposed framework provides clinical guidelines for optimizing SPI placement depth, emergence profile contouring, and peri-implant soft tissue thickness to mitigate the risk of peri-implant mucositis. By shifting from a traditional two-dimensional perspective to a multidimensional analysis, this approach offers an evidence-based foundation for achieving biologically stable and esthetically predictable outcomes. Conclusions: The proposed three-dimensional model advances the understanding of peri-implant soft tissue adaptation by integrating novel anatomical and biomechanical concepts. By redefining peri-implant biologic width through the introduction of TZ and SZ, this study provides a structured framework for optimizing SPI placement and soft tissue management. Future research should focus on validating this model through histological studies and long-term clinical trials to refine its application in clinical practice.

Article activity feed