Advances in Digital Technologies in Dental Medicine: Enhancing Precision in Virtual Articulators

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Precision in diagnosis is essential for achieving optimal outcomes in prosthodontics, orthodontics, and orthognathic treatments. Virtual articulators provide a sophisticated digital alternative to conventional methods, integrating intraoral scans, facial scans, and cone beam computed tomography (CBCT) to enhance treatment predictability. This review examines advancements in virtual articulator technology, including digital workflows, virtual facebow transfer, and occlusal analysis, with a focus on Artificial Intelligence (AI)-driven methodologies such as machine learning and artificial neural networks. The clinical implications, particularly in condylar guidance and sagittal condylar inclination, are investigated. By streamlining the acquisition and articulation of digital dental models, virtual articulators minimize material handling errors and optimize workflow efficiency. Advanced imaging techniques enable precise alignment of digital maxillary models within computer-aided design and computer-aided manufacturing systems (CAD/CAM), facilitating accurate occlusal simulations. However, challenges include potential distortions during digital file integration and the necessity for robust algorithms to enhance data superimposition accuracy. The adoption of virtual articulators represents a transformative advancement in digital dentistry, with promising implications for diagnostic precision and treatment outcomes. Nevertheless, further clinical validation is essential to ensure the reliable transfer of maxillary casts and refine digital algorithms. Future developments should prioritize the integration of AI to enhance predictive modeling, positioning virtual articulators as a standard tool in routine dental practice, thereby revolutionizing treatment planning and interdisciplinary collaboration. This review explores advancements in virtual articulators, focusing on their role in enhancing diagnostic precision, occlusal analysis, and treatment predictability. It examines digital workflows, AI-driven methodologies, and clinical applications while addressing challenges in data integration and algorithm optimization.

Article activity feed