Estimation of the Actual Incidence of Coronavirus Disease (COVID-19) in Emergent Hotspots: The Example of Hokkaido, Japan during February–March 2020

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Following the first report of the coronavirus disease 2019 (COVID-19) in Sapporo city, Hokkaido Prefecture, Japan, on 14 February 2020, a surge of cases was observed in Hokkaido during February and March. As of 6 March, 90 cases were diagnosed in Hokkaido. Unfortunately, many infected persons may not have been recognized due to having mild or no symptoms during the initial months of the outbreak. We therefore aimed to predict the actual number of COVID-19 cases in (i) Hokkaido Prefecture and (ii) Sapporo city using data on cases diagnosed outside these areas. Two statistical frameworks involving a balance equation and an extrapolated linear regression model with a negative binomial link were used for deriving both estimates, respectively. The estimated cumulative incidence in Hokkaido as of 27 February was 2,297 cases (95% confidence interval (CI): 382–7091) based on data on travelers outbound from Hokkaido. The cumulative incidence in Sapporo city as of 28 February was estimated at 2233 cases (95% CI: 0–4893) based on the count of confirmed cases within Hokkaido. Both approaches resulted in similar estimates, indicating a higher incidence of infections in Hokkaido than were detected by the surveillance system. This quantification of the gap between detected and estimated cases helped to inform the public health response at the beginning of the pandemic and provided insight into the possible scope of undetected transmission for future assessments.

Article activity feed

  1. SciScore for 10.1101/2020.04.24.20077800: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    The data were processed using R version 3.6.2 and Python version 3.6.10.
    Python
    suggested: (IPython, RRID:SCR_001658)
    The Markov chain Monte Carlo (MCMC) simulations were performed in Stan (cmdStan version 2.22.1 [43]) for estimation of the delay distribution, and in PyMC3 version 3.8 [44] for all other estimates.
    cmdStan
    suggested: None

    Results from OddPub: Thank you for sharing your code.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.