IoT and Machine Learning for Smart Bird Monitoring and Repellence: Techniques, Challenges, and Opportunities

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and ineffective over time. Advances in artificial intelligence (AI) and the Internet of Things (IoT) present opportunities for enabling automated real-time bird detection and repellence. This study reviews recent developments (2020–2025) in AI-driven bird detection and repellence systems, emphasising the integration of image, audio, and multi-sensor data in IoT and edge-based environments. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was used, with 267 studies initially identified and screened from key scientific databases. A total of 154 studies met the inclusion criteria and were analysed. The findings show the increasing use of convolutional neural networks (CNNs), YOLO variants, and MobileNet in visual detection, and the growing use of lightweight audio-based models such as BirdNET, MFCC-based CNNs, and TinyML frameworks for microcontroller deployment. Multi-sensor fusion is proposed to improve detection accuracy in diverse environments. Repellence strategies include sound-based deterrents, visual deterrents, predator-mimicking visuals, and adaptive AI-integrated systems. Deployment success depends on edge compatibility, power efficiency, and dataset quality. The limitations of current studies include species-specific detection challenges, data scarcity, environmental changes, and energy constraints. Future research should focus on tiny and lightweight AI models, standardised multi-modal datasets, and intelligent, behaviour-aware deterrence mechanisms suitable for precision agriculture and ecological monitoring.

Article activity feed