The Effect of Different Sintering Protocols on the Mechanical and Microstructural Properties of Two Multilayered Zirconia Ceramics: An In Vitro Study
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study evaluated the effects of different sintering protocols on the mechanical and microstructural properties of two multilayered zirconia materials: strength-gradient zirconia (KATANA YML) and color-gradient zirconia (KATANA UTML). Bar-shaped specimens were fabricated from both zirconia types. Three sintering protocols were applied: a manufacturer-recommended conventional protocol (7 h at 1550 °C), a high-speed protocol (54 min at 1600 °C), and a modified high-speed protocol (51 min at 1600 °C). Eighty-four specimens underwent three-point flexural strength testing. SEM and XRD analyses were used to assess microstructure and phase composition. No significant differences in flexural strength were found among sintering protocols (p > 0.05), but YML consistently showed higher strength than UTML (p < 0.05). The highest strength in YML was observed after high-speed sintering, followed by the shortened and conventional protocols. In UTML, the modified protocol yielded the highest strength, followed by the high-speed and then conventional protocol. SEM revealed finer, more homogeneous grains with shorter sintering times. XRD confirmed stable phase composition across all protocols. High-speed and modified high-speed sintering protocols can reduce processing time without compromising zirconia’s mechanical performance. Material type had a greater effect on flexural strength than sintering time, though microstructure was protocol dependent. Proper selection of zirconia type and sintering strategy is essential for optimal outcomes.