Advanced Cryptography Using Nanoantennas in Wireless Communication
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This work presents an end-to-end encryption–decryption framework for securing electromagnetic signals processed through a nanoantenna. The system integrates amplitude normalization, uniform quantization, and Reed–Solomon forward error correction with key establishment via ECDH and bitwise XOR encryption. Two signal types were evaluated: a synthetic Gaussian pulse and a synthetic voice waveform, representing low- and high-entropy data, respectively. For the Gaussian signal, reconstruction achieved an RMSE = 11.42, MAE = 0.86, PSNR = 26.97 dB, and Pearson’s correlation coefficient = 0.8887. The voice signal exhibited elevated error metrics, with an RMSE = 15.13, MAE = 2.52, PSNR = 24.54 dB, and Pearson correlation = 0.8062, yet maintained adequate fidelity. Entropy analysis indicated minimal changes between the original signal and the reconstructed signal. Furthermore, avalanche testing confirmed strong key sensitivity, with single-bit changes in the key altering approximately 50% of the ciphertext bits. The findings indicate that the proposed pipeline ensures high reconstruction quality with lightweight encryption, rendering it suitable for environments with limited computational resources.