Perspective-Based Microblog Summarization

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Social media allows people to express and share a variety of experiences, opinions, beliefs, interpretations, or viewpoints on a single topic. Summarizing a collection of social media posts (microblogs) on one topic may be challenging and can result in an incoherent summary due to multiple perspectives from different users. We introduce a novel approach to microblog summarization, the Multiple-View Summarization Framework (MVSF), designed to efficiently generate multiple summaries from the same social media dataset depending on chosen perspectives and deliver personalized and fine-grained summaries. The MVSF leverages component-of-perspective computing, which can recognize the perspectives expressed in microblogs, such as sentiments, political orientations, or unreliable opinions (fake news). The perspective computing can filter social media data to summarize them according to specific user-selected perspectives. For the summarization methods, our framework implements three extractive summarization methods: Entity-based, Social Signal-based, and Triple-based. We conduct comparative evaluations of MVSF summarizations against state-of-the-art summarization models, including BertSum, SBert, T5, and Bart-Large-CNN, by using a gold-standard BBC news dataset and Rouge scores. Furthermore, we utilize a dataset of 18,047 tweets about COVID-19 vaccines to demonstrate the applications of MVSF. Our contributions include the innovative approach of using user perspectives in summarization methods as a unified framework, capable of generating multiple summaries that reflect different perspectives, in contrast to prior approaches of generating one-size-fits-all summaries for one dataset. The practical implication of MVSF is that it offers users diverse perspectives from social media data. Our prototype web application is also implemented using ChatGPT to show the feasibility of our approach.

Article activity feed