Unlocking the Potential of Biostimulants: A Review of Classification, Mode of Action, Formulations, Efficacy, Mechanisms, and Recommendations for Sustainable Intensification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The escalating challenges of climate change, soil degradation, and the need to ensure global food security are driving the transition towards more sustainable agricultural practices. Biostimulants, a diverse category of substances and microorganisms, have emerged as promising tools to enhance crop resilience, improve nutrient use efficiency (NUE), and support sustainable intensification. However, their widespread adoption is hampered by significant variability in efficacy and a lack of consensus on their optimal use. This comprehensive review synthesizes current scientific knowledge to critically evaluate the performance of biostimulants within sustainable agricultural systems. It aims to move beyond isolated case studies to provide a holistic analysis of their modes of action, efficacy under stress, and interactions with the environment. The analysis confirms that biostimulant efficacy is inherently context-dependent, governed by a complex interplay of biological, environmental, and management factors. Performance variability is explained by four core principles: the Limiting Factor Principle, the Biological Competition Axiom, the Stress Gradient Hypothesis, and the Formulation and Viability Imperative. A significant disconnect exists between promising controlled-environment studies and variable field results, highlighting the danger of extrapolating data without accounting for real-world agroecosystem complexity. Biostimulants are not universal solutions but are sophisticated tools whose value is realized through context-specific application. Their successful integration requires a precision-based approach aligned with specific agronomic challenges. We recommend that growers adopt diagnostic tools and on-farm trials, while producers must provide transparent multi-location field data and invest in advanced formulations. Future research must prioritize field validation, mechanistic studies using omics tools, and the development of crop-specific protocols and industry-wide standards to fully unlock the potential of biostimulants for building resilient and productive agricultural systems.

Article activity feed