Gene Expression Patterns in Lung Adenocarcinoma Cells in Response to Changes in Deuterium Concentration
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Deuterium, a stable isotope of hydrogen present in natural water at ~150 ppm, has been implicated in modulating cellular metabolism and tumor progression. While deuterium-depleted water (DDW) has shown anti-cancer effects in preclinical and clinical studies, the underlying transcriptional mechanisms remain incompletely defined. Here, we profiled gene expression in A549 lung adenocarcinoma cells cultured for 72 h in media containing four graded deuterium concentrations (40, 80, 150, and 300 ppm) using a targeted NanoString panel of 236 cancer-related genes. After stringent quality filtering, 87 genes were retained and classified into nine distinct expression patterns based on fold-change trends relative to the 150 ppm control. High deuterium (300 ppm) induced strong upregulation (up to 2.1-fold) of oncogenic and survival-related genes (e.g., EGFR, CTNNB1, STAT3, CD44), while DDW (40–80 ppm) led to selective downregulation (down to 0.58-fold) of oncogenes (e.g., MYCN, ETS2, IRF1) and drug-resistance genes (e.g., ABCB1). Se-veral genes involved in DNA repair, apoptosis, and extracellular matrix remodeling exhibited dose-dependent responses, suggesting coordinated regulation by deuterium abundance. These findings demonstrate that deuterium concentration functions as a biologically active variable capable of modulating cancer-relevant gene networks. This exploratory dataset refines mechanistic models of DDW action and provides a foundation for future studies incorporating biological replication, functional assays, and in vivo validation. Significance: Deuterium concentration modulation alters oncogenic, apoptotic, and drug-resistance gene networks in lung adenocarcinoma cells, refining prior models of deuterium-depleted water effects. These findings identify deuterium concentration as a biologically active variable warranting further mechanistic and translational investigation.