Microbial Selection and Functional Adaptation in Technical Snow: A Molecular Perspective from 16S rRNA Profiling
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Artificial (technical) snow production is an increasingly common practice in alpine regions, yet little is known about its role in shaping microbial communities at the molecular level. In this study, we combined culture-based methods with high-throughput 16S rRNA gene sequencing and functional trait prediction (FAPROTAX) to investigate bacterial communities across the full technical snowmaking cycle in one of Polish ski resorts. The molecular profiling revealed that technical snow harbors dominant taxa with known cold-adaptation mechanisms, biofilm-forming abilities, and stress tolerance traits (e.g., Brevundimonas, Lapillicoccus, Massilia, with a relative abundance of 2.95, 2.14, 3.38 and 5.61%, respectively). Functional inference revealed a consistent dominance of chemoheterotrophy (up to 38% in relative abundance) and aerobic chemoheterotrophy (up to 36%), with localized enrichment of fermentation (6.9% in cannon filter and 6.5% in sediment) and aromatic compound degradation (3.7% in source waters, 3.8% in cannon filter and 4.6% in sediment). Opportunistic and potentially pathogenic genera (e.g., Acinetobacter, Flavobacterium, Nocardia) persisted in sediments (7.4%, 21.4% and 3.5%) and meltwater (34.9% and 2.31% for the latter two), raising concerns about their environmental reintroduction. Our findings indicate that technical snowmaking systems act as selective environments not only for microbial survival but also for the persistence of molecular traits relevant to environmental resilience and potential pathogenicity. Our study provides a molecular ecological framework for assessing the impacts of snowmaking on alpine ecosystems and underscores the importance of monitoring microbial functions in addition to taxonomic composition.