Mandragora autumnalis: Phytochemical Composition, Antioxidant and Anti-Cancerous Bioactivities on Triple-Negative Breast Cancer Cells
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Breast cancer is a common and chronic condition, and despite improvements in diagnosis, treatment, and prevention, the number of cases of breast cancer is rising annually. New therapeutic drugs that target specific checkpoints should be created to fight breast cancer. Mandragora autumnalis possesses substantial cultural value as a herb and is regarded as one of the most significant medicinal plants; however, little is known about its anticancerous biological activity and chemopreventive molecular pathways against the triple-negative breast cancer (MDA-MB-231) cell line. In this study, the antioxidant, anticancer, and underlying molecular mechanisms of the Mandragora autumnalis ethanolic leaves extract (MAE) were evaluated, and its phytochemical composition was determined. Results indicated that MAE diminished the viability of MDA-MB-231 cells in a concentration- and time-dependent manner. Although MAE exhibited 55% radical scavenging activity at higher concentrations in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the attenuation of its cytotoxic effects in MDA-MB-231 cells with N-acetylcysteine (NAC) co-treatment suggests a potential role of oxidative stress. Additionally, MAE caused an increase in the tumor suppressor p53. Moreover, this extract caused a significant decrease in the expression of Ki-67 (a cellular proliferation marker), MMP-9 (matrix metalloproteinase-9, an enzyme involved in extracellular matrix degradation and metastasis), and STAT-3 (a transcription factor regulating cell growth and survival). Also, MAE altered cell cycle, cell migration, angiogenesis, invasion, aggregation, and adhesion to suppress cellular processes linked to metastasis. All of our research points to MAE’s potential to function as an anticancer agent and opens up new possibilities for the development of innovative triple-negative breast cancer treatments.