Transcriptomic Profiling of Lesional and Perilesional Skin in Atopic Dermatitis Suggests Barrier Dysfunction, Inflammatory Activation, and Alterations to Vitamin D Metabolism
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease marked by impaired barrier function and immune dysregulation. This study explores transcriptomic differences between lesional (IL) and perilesional (PL) skin in patients with AD, focusing on barrier-related and vitamin D-associated pathways. RNA sequencing was performed on matched IL and PL biopsies from 21 adults with moderate-to-severe AD. Differential gene expression, pathway enrichment, and correlation analysis with clinical variables were assessed. A total of 8817 genes were differentially expressed in IL versus PL skin (padj < 0.05). Among genes with the highest level of dysregulation, strong upregulation was observed for inflammatory mediators (IL-19, IL-8, CXCL6), and epidermal remodeling and barrier-disrupting genes (MMP1, GJB2). The vitamin D pathway genes CYP27B1 and CYP24A1 were also significantly upregulated. In contrast, key barrier-related genes such as FLG2 and CGNL1 were markedly downregulated. While some patterns in gene expression showed subgroup-specific trends, no independent clinical predictors emerged in multivariate models. Reactome pathway analysis revealed the enrichment of pathways involved in keratinization, cornified envelope formation, IL-4/IL-13 signaling, chemokine activity, and antimicrobial responses, highlighting coordinated structural and immunologic dysregulation in lesional skin. Lesional skin in AD displays a distinct transcriptomic profile marked by barrier impairment, heightened inflammatory signaling, and activation of vitamin D-related pathways. These findings provide the first RNA-seq-based comparison of IL and adjacent PL skin in AD. We identify subclinical activation in PL skin and vitamin D pathway upregulation with disrupted gene coordination in lesions. These findings enhance our understanding of the molecular mechanisms underlying inflammation in AD.