DNA Satellites Impact Begomovirus Diseases in a Virus-Specific Manner

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Begomoviruses infect many crops and weeds globally, especially in the tropical and subtropical regions, where there are waves of epidemics. These begomovirus epidemics are frequently associated with three DNA satellites: betasatellites, alphasatellites, and deltasatellites. Except for the origin of replication, these satellites show no sequence identity with the helper begomovirus. Alphasatellites and betasatellites encode the α-Rep and βC1 proteins, respectively, while deltasatellites encode no proteins. α-Rep, which functions like the Rep of the helper begomoviruses, ensures alphasatellite replication autonomy, while betasatellites and deltasatellites depend wholly on the helper virus for replication. The betasatellite βC1 protein is a pathogenicity determinant and suppressor of RNA silencing. The associations between satellites and helper viruses vary, depending on the virus and the host, and the roles of these satellites in disease development are an active area of investigation. This review highlights current information on the role of DNA satellites in begomovirus diseases and examines commonalities and differences between and within these satellites under prevailing conditions. Furthermore, two episomes, SEGS-1 and SEGS-2, associated with cassava mosaic geminiviruses, and their possible status as DNA satellites are discussed. DNA satellites are a major factor in begomovirus infections, which are a major constraint to crop production, especially in tropical and subtropical regions. Thus, areas for future research efforts, as well as implications in the biotechnological management of these viruses, are discussed in this review.

Article activity feed