Discovery and Functional Validation of EP3 Receptor Ligands with Therapeutic Potential in Cardiovascular Disease

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The prostaglandin E2 receptor EP3 is emerging as a promising therapeutic target in cardiovascular diseases because of its involvement in vascular inflammation, platelet aggregation, and vasoconstriction. However, selective EP3 ligands with validated biological activities are scarce. In this study, we combined computational and experimental strategies to identify and validate novel EP3 receptor ligands with therapeutic potential. We implemented a high-throughput, structure- and ligand-based virtual screening pipeline, enabling efficient exploration of approved drugs and natural compounds from DrugBank and FooDB libraries. Top-scoring candidates were prioritised based on binding energy and pharmacophoric similarity. Selected hits were subjected to in silico ADME/Tox profiling using QikProp to identify molecules with favourable pharmacokinetic and safety parameters. TUCA, masoprocol, and pravastatin sodium have emerged as lead candidates and were validated in vitro using endothelial migration and platelet aggregation assays. TUCA exhibited the most consistent inhibitory effect on endothelial migration, whereas masoprocol and hydrocortisone significantly reduced platelet aggregation. These findings establish a multidimensional workflow for the rational identification of EP3 ligands and support their potential use in cardiovascular therapeutics.

Article activity feed