SARS-CoV-2 Spike Protein Binding of Glycated Serum Albumin—Its Potential Role in the Pathogenesis of the COVID-19 Clinical Syndromes and Bias towards Individuals with Pre-Diabetes/Type 2 Diabetes and Metabolic Diseases

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The immune response to SARS-CoV-2 infection requires antibody recognition of the spike protein. In a study designed to examine the molecular features of anti-spike and anti-nucleocapsid antibodies, patient plasma proteins binding to pre-fusion stabilised complete spike and nucleocapsid proteins were isolated and analysed by matrix-assisted laser desorption ionisation–time of flight (MALDI-ToF) mass spectrometry. Amongst the immunoglobulins, a high affinity for human serum albumin was evident in the anti-spike preparations. Careful mass comparison revealed the preferential capture of advanced glycation end product (AGE) forms of glycated human serum albumin by the pre-fusion spike protein. The ability of bacteria and viruses to surround themselves with serum proteins is a recognised immune evasion and pathogenic process. The preference of SARS-CoV-2 for AGE forms of glycated serum albumin may in part explain the severity and pathology of acute respiratory distress and the bias towards the elderly and those with (pre)diabetic and atherosclerotic/metabolic disease.

Article activity feed

  1. SciScore for 10.1101/2021.06.14.21258871: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    EthicsIRB: COVID-19 patients hospitalised during the first wave and as well as NHS healthcare workers working at the Royal Papworth Hospital in Cambridge, UK served as the exposed HCW cohort (Study approved by Research Ethics Committee Wales, IRAS: 96194 12/WA/0148.
    Consent: All participants provided written, informed consent prior to enrolment in the study.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.