Early Transmission Dynamics of Novel Coronavirus (COVID-19) in Nigeria

This article has been Reviewed by the following groups

Read the full article

Abstract

On 31 December 2019, the World Health Organization (WHO) was notified of a novel coronavirus disease in China that was later named COVID-19. On 11 March 2020, the outbreak of COVID-19 was declared a pandemic. The first instance of the virus in Nigeria was documented on 27 February 2020. This study provides a preliminary epidemiological analysis of the first 45 days of COVID-19 outbreak in Nigeria. We estimated the early transmissibility via time-varying reproduction number based on the Bayesian method that incorporates uncertainty in the distribution of serial interval (time interval between symptoms onset in an infected individual and the infector), and adjusted for disease importation. By 11 April 2020, 318 confirmed cases and 10 deaths from COVID-19 have occurred in Nigeria. At day 45, the exponential growth rate was 0.07 (95% confidence interval (CI): 0.05–0.10) with a doubling time of 9.84 days (95% CI: 7.28–15.18). Separately for imported cases (travel-related) and local cases, the doubling time was 12.88 days and 2.86 days, respectively. Furthermore, we estimated the reproduction number for each day of the outbreak using a three-weekly window while adjusting for imported cases. The estimated reproduction number was 4.98 (95% CrI: 2.65–8.41) at day 22 (19 March 2020), peaking at 5.61 (95% credible interval (CrI): 3.83–7.88) at day 25 (22 March 2020). The median reproduction number over the study period was 2.71 and the latest value on 11 April 2020, was 1.42 (95% CrI: 1.26–1.58). These 45-day estimates suggested that cases of COVID-19 in Nigeria have been remarkably lower than expected and the preparedness to detect needs to be shifted to stop local transmission.

Article activity feed

  1. SciScore for 10.1101/2020.04.14.20064949: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    This is an early investigation of COVID-19 cases in Nigeria, as such we acknowledged the following limitations in our study. Firstly, though the data analysed were the official figures released by the Nigeria Centre for Disease Control, the actual cases in the country within the period studied could have been underreported due to low testing capabilities. For instance, as at April 6, 2020, the country was only able to test 5,000 individuals translating to 240 per 100,000 people. Moreover, a lack of proper awareness and fear of stigmatization could have hindered people with suspected cases from coming forward for testing. Secondly, Figure 4B was based on most plausible daily counts from the daily reports therefore, the number of imported cases may not be in real-time, therefore some of patient may have been previously included the cases counted as missing epidemiological information. Lastly,

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.