Evaluation of the Extreme Precipitation and Runoff Flow Characteristics in a Semiarid Sub-Basin Based on Three Satellite Precipitation Products
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In this study, we analyzed the suitability of using the CHIRPS, CMORPH and TRMM platforms in monitoring extreme precipitation events, precipitation–runoff relationships, and seasonal/year-to-year variability in the Saltito semiarid sub-basin in the Mexican state of Durango. Satellite precipitation products (SPP) in 16 sites were contrasted point to point with data from rainfall gauge stations and with a daily temporal resolution for the period of four years (2015–2019). Using this information, we constructed Rx1d, Rx2d, R25mm, and RR95 extreme rainfall indices. For the precipitation–runoff relationships, a runoff model based on the Storm Water Management Model (SWMM) was calibrated and validated with gauge data, and we obtained the Qx1d, Qx2d, and Qx3d runoff indices. We used the bias volume (%), MSE, correlation coefficient, and median bias to evaluate the ability of satellite products to detect and analyze extreme precipitation and run flow events. Although these sensors tend to overestimate both precipitation levels and the occurrence of extreme precipitation events, their high spatial and temporal resolutions make them a reliable tool for the analysis of trends in climate change indices. As a result, they serve as a useful resource in evaluating the intensity of climate change in the region, particularly in terms of precipitation patterns. They also allow hydrological modeling and the observation of precipitation–runoff relationships. This is relevant in the absence of precipitation and hydrometric information, which is usually common in vast regions of the developing world.