Assessing the Effects of Bioenergy Cropping Scenarios on the Surface Water and Groundwater of an Intensively Agricultural Basin in Central Greece
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Pinios river basin constitutes the most important agricultural production area in Greece but contributes to the degradation of the quality and quantity of surface water and groundwater bodies. Bioenergy crops implemented as part of the existing cropping systems could be a novel and efficient mitigation strategy against water degradation, contributing to the production of energy through renewable sources. This study uses the Soil and Water Assessment Tool (SWAT) to first develop a representative model of Pinios river basin and evaluate its current state with respect to water availability and nitrate water pollution. A low-input perennial bioenergy crop, switchgrass, is then simulated closely to the Greek conditions to investigate its potential effects on water in three implementation scenarios: the installation and growth of switchgrass in the entire irrigated cropland, exclusively in irrigated sloping (slopes > 1.5%) cropland, and exclusively in irrigated non-sloping cropland. The simulated results demonstrate that under all scenarios, the water quality improvements with respect to the nitrate loads entering surface water and groundwater bodies were significant, with their reduction being directly affected by the extent to which switchgrass replaced resource-demanding conventional crops. Specifically, the reduction in the annual nitrate loads in the surface water under these three scenarios varied from 7% to 18% at the river basin scale, while in certain cropland areas, the respective reduction even exceeded a level of 80%. The potential to improve the water status was also considerable, as the implementation of the bioenergy crop reduced the irrigation water used annually in the basin by 10% (64 Mm3) when switchgrass replaced the conventional crops only on the sloping land and by almost 30% (187 Mm3) when it replaced them throughout the irrigated land. At the same time, significant biomass production above 18 t/ha/y applied in all of the simulations. This study also highlights the contribution of the bioenergy crop to the rehabilitation of the groundwater levels across the basin, with the possibility of increasing them by >50% compared to the baseline, implying that the adoption of switchgrass could be a promising means against water scarcity.