Assessing Nitrogen Fertilization in Processing Pepper: Critical Nitrogen Curve, Yield Response, and Crop Development

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Groundwater pollution in intensive horticultural areas is becoming an increasingly important problem. Over-fertilization of these crops, combined with poor irrigation management, leads to groundwater contamination through leaching. Previous research on the effect of N on sweet peppers grown in greenhouses is abundant, but data on outdoor cultivation, especially considering variety and site influences, are lacking. Therefore, this study evaluates nitrogen (N) fertilization in open-field processing-pepper crop in Extremadura, Spain to mitigate this environmental impact. Field trials were conducted in 2020, 2021, and 2022 to determine the optimum N fertilizer rate for processing peppers, with the aim of reducing environmental impacts such as nitrate leaching while maintaining crop yields. The trial consisted of applying different N doses, 0, 60, 120, and 180 kg N/ha in 2020 and 2021 and 0, 100, and 300 kg N/ha in 2022. There were four replications of each treatment, arranged in randomized blocks. Measurements included crop yield, biomass, intercepted photosynthetically active radiation (PAR), and canopy cover. The study also developed a critical nitrogen curve (CNC) to determine the minimum N concentration required for optimal growth. The commercial yield results showed that there were no significant differences between the two treatments with higher N inputs in the three years; therefore, the application of more than 120 kg N/ha did not significantly increase yield. Nitrogen-free treatments resulted in earlier fruit maturity, concentrating the harvest and reducing waste. In addition, excessive N application led to environmental problems such as groundwater contamination due to nitrate leaching. The study concludes that outdoor pepper crops in this region can achieve optimal yields with lower N rates (around 120 kg N/ha) compared to current practices, taking into account that initial soil N values were higher than 100 kg N/ha, thereby reducing environmental risks and fertilizer costs. It also established relationships between biomass, canopy cover, and N uptake to improve fertilization strategies. These data support future crop modeling and sustainable fertilization practices.

Article activity feed