A Glacier Ice Thickness Estimation Method Based on Deep Convolutional Neural Networks

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ice thickness is a key parameter for glacier mass estimations and glacier dynamics simulations. Multiple physical models have been developed by glaciologists to estimate glacier ice thickness. However, obtaining internal and basal glacier parameters required by physical models is challenging, often leading to simplified models that struggle to capture the nonlinear characteristics of ice flow and resulting in significant uncertainties. To address this, this study proposes a convolutional neural network (CNN)-based deep learning model for glacier ice thickness estimation, named the Coordinate-Attentive Dense Glacier Ice Thickness Estimate Model (CADGITE). Based on in situ ice thickness measurements in the Swiss Alps, a CNN is designed to estimate glacier ice thickness by incorporating a new architecture that includes a Residual Coordinate Attention Block together with a Dense Connected Block, using the distance to glacier boundaries as a complement to inputs that include surface velocity, slope, and hypsometry. Taking ground-penetrating radar (GPR) measurements as a reference, the proposed model achieves a mean absolute deviation (MAD) of 24.28 m and a root mean square error (RMSE) of 37.95 m in Switzerland, outperforming mainstream physical models. When applied to 14 glaciers in High Mountain Asia, the model achieves an MAD of 20.91 m and an RMSE of 27.26 m compared to reference measurements, also exhibiting better performance than mainstream physical models. These comparisons demonstrate the good accuracy and cross-regional transferability of our approach, highlighting the potential of using deep learning-based methods for larger-scale glacier ice thickness estimation.

Article activity feed