Understanding Complex Hydraulic Heterogeneities in Crystalline Basement Aquifers Used as Drinking Water Sources
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Managing groundwater flow in crystalline basement aquifers (CBAs) remains challenging due to their dependence on secondary permeability fields characterized by high spatial variability. This study combines pumping and tracer tests to estimate the hydraulic properties and connectivity in four bedrock wells within a CBA in Southwestern Nigeria. The pumping tests caused drawdowns up to 4.13 m and 12.60 m in observation and pumping wells, with significant drawdowns only in three of four wells, revealing poor connection with the fourth well. The time-drawdown plots confirm double porosity effects suggesting fracture and matrix flow and release of water from a fractured dyke. Fracture and matrix hydraulic conductivities exceeded 7.9 × 10−7 m/s and 1.00 × 10−10 m/s, while the aquifer yield ranged from 0.08 to 0.34%. Groundwater flow velocity and dispersivity of 5.80 × 10−4 m/s and 2.60 m were estimated from the tracer test, while a Peclet number of 3.25 suggests dominant advective flow. Calculated sustainable yield shows that each well could provide water for up to 1600 people under controlled low pumping at 0.50 l/s with higher rates possible using larger diameter wells. These results confirm high variability in groundwater flow within CBAs, justifying the need to characterize them effectively.