Development of Human Serum Albumin-Based Hydrogels for Potential Use as Wound Dressings

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Protein-based materials such as human serum albumin (HSA) have demonstrated significant potential for the development of novel wound management materials. For the first time, the formation of HSA-based hydrogels was proposed using a combination of thermal- and ethanol-induced approaches. The combination of phosphate-buffered saline (PBS) and limited (up to 20% v/v) ethanol content offers a promising strategy for fabricating human serum albumin-based hydrogels with tunable properties. The hydrogel formation was studied using in situ dynamic light scattering (DLS) for qualitative and semi-quantitative analysis of the patterns of protein hydrogel formation through thermally induced gelation. The rheological properties of human serum albumin-based hydrogels were investigated. Hydrogels synthesized via thermally induced gelation using a denaturing agent exhibit a dynamic viscosity ranging from 100 to 10,000 mPa·s. The biocompatibility, biodegradability, and structural stability of human serum albumin-based hydrogels were comprehensively evaluated in physiologically relevant media. These human serum albumin-based hydrogels represent a promising platform for developing topical therapeutic agents for wound management and tissue engineering applications. This study investigated the kinetics of tetracycline release from human serum albumin-based hydrogels in PBS and fetal bovine serum (FBS). All tested formulations of HSA-based hydrogels loaded with tetracycline (1 mg/mL) demonstrated antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Corynebacterium striatum strains.

Article activity feed