Rapid Salmonella Serovar Classification Using AI-Enabled Hyperspectral Microscopy with Enhanced Data Preprocessing and Multimodal Fusion

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Salmonella serovar identification typically requires multiple enrichment steps using selective media, consuming considerable time and resources. This study presents a rapid, culture-independent method leveraging artificial intelligence (AI) to classify Salmonella serovars from rich hyperspectral microscopy data. Five serovars (Enteritidis, Infantis, Kentucky, Johannesburg, 4,[5],12:i:-) were analyzed from samples prepared using only sterilized de-ionized water. Hyperspectral data cubes were collected to generate single-cell spectra and RGB composite images representing the full microscopy field. Data analysis involved two parallel branches followed by multimodal fusion. The spectral branch compared manual feature selection with data-driven feature extraction via principal component analysis (PCA), followed by classification using conventional machine learning models (i.e., k-nearest neighbors, support vector machine, random forest, and multilayer perceptron). The image branch employed a convolutional neural network (CNN) to extract spatial features directly from images without predefined morphological descriptors. Using PCA-derived spectral features, the highest performing machine learning model achieved 81.1% accuracy, outperforming manual feature selection. CNN-based classification using image features alone yielded lower accuracy (57.3%) in this serovar-level discrimination. In contrast, a multimodal fusion model combining spectral and image features improved accuracy to 82.4% on the unseen test set while reducing overfitting on the train set. This study demonstrates that AI-enabled hyperspectral microscopy with multimodal fusion can streamline Salmonella serovar identification workflows.

Article activity feed