Viscoelastic Properties of Organosilicon Fluid Interlayer at Low-Frequency Shear Deformations
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The present work explores the viscoelastic properties of a homologous series of organosilicon fluids (polymethylsiloxane fluids) using the acoustic resonant method at a frequency of shear vibrations of approximately 100 kHz. The resonant method is based on investigating the influence of additional binding forces on the resonant characteristics of the oscillatory system. The fluid under study was placed between a piezoelectric quartz crystal that performs tangential oscillations and a solid cover plate. Standing shear waves were established in the fluid. The thickness of the liquid layer was much smaller than the length of the shear wavelength, and low-amplitude deformations allowed for the determination of the complex shear modulus G* in the linear region, where the shear modulus has a constant value. The studies demonstrated the presence of a viscoelastic relaxation process at the experimental frequency, which is several orders of magnitude lower than the known high-frequency relaxation in liquids. In this work, the relaxation frequency of the viscoelastic process in the studied fluids and the effective viscosity were calculated, and the lengths of the shear wave and the attenuation coefficients were determined.