Rapid Multi-Factor Evaluation System for Full-Process Risk Assessment of Coal Spontaneous Combustion in Engineering Applications

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Existing coal spontaneous combustion liability assessments suffer from incomplete temperature range coverage, poor cross-rank comparability, and weak correlations between microscopic essence and macroscopic criteria—issues that undermine reliability and risk coal mine safety. This study aims to establish a structure-driven intrinsic identification system to address these gaps. Using 10 cross-rank coal samples (lignite, bituminous coal, and anthracite), we conducted systematic research via experiments, model building, and theoretical verification. We integrated three stage-specific parameters (each matching a combustion phase): saturated oxygen uptake (VO2, 30 °C chromatographic adsorption), average heating rate R70 (40–70 °C adiabatic oxidation), and Fuel Combustion Characteristic index (FCC, 110–230 °C crossing point method). With Information Entropy weighting (VO2: 0.296; R70: 0.292; and FCC: 0.412), we constructed the Multi-Factor Comprehensive Spontaneous Combustion Index (MF-CSCI). We also screened functional groups via FTIR, built a microstructure-driven model (MD-CSEI, linking groups to MF-CSCI), and verified mechanisms via DFT. Results show MF-CSCI covers the full “adsorption-heat accumulation-self-heating” process: HG lignite (MF-CSCI = 1.0) had high liability and YCW anthracite (MF-CSCI = 7.98) had low liability, solving cross-rank issues. Pearson analysis found –OH positively correlated with MF-CSCI (r ≈ −0.997), C=C negatively (r ≈ −0.951); MD-CSEI achieved R2 = 0.863 (p = 0.042). This study improves cross-rank assessment accuracy, enables rapid micro-to-macro risk prediction, and provides a theoretical basis for on-site coal safety management.

Article activity feed