Comparative Analysis of Machine Learning and Deep Learning Models for Tourism Demand Forecasting with Economic Indicators

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study addresses the critical need for accurate tourism demand (TD) forecasting in Bulgaria using economic indicators, developing robust predictive models to navigate post-pandemic market volatility. The COVID-19 pandemic exposed tourism’s vulnerability to systemic shocks, highlighting deficiencies in traditional forecasting approaches. Bulgaria’s tourism industry, characterized by strong seasonal variations and economic sensitivity, requires enhanced methodologies for strategic planning in uncertain environments. The research employs comprehensive comparative analysis of machine learning (ML) and deep machine learning (DML) methodologies. Monthly overnight stay data from Bulgaria’s National Statistical Institute (2005–2024) were integrated with COVID-19 case data, Consumer Price Index (CPI) and Bulgarian Gross Domestic Product (GDP) variables for the same period. Multiple approaches were implemented including Prophet with external regressors, Ridge regression, LightGBM, and gradient boosting models using inverse MAE weighting optimization, alongside deep learning architectures such as Bidirectional LSTM with attention mechanisms and XGBoost configurations, as each model statistical significance was estimated. Contrary to prevailing assumptions about deep learning superiority, traditional machine learning ensemble approaches demonstrated superior performance. The ensemble model combining Prophet, LightGBM, and Ridge regression achieved optimal results with MAE of 156,847 and MAPE of 14.23%, outperforming individual models by 10.2%. Deep learning alternatives, particularly Bi-LSTM architectures, exhibited significant deficiencies with negative R2 scores, indicating fundamental limitations in capturing seasonal tourism patterns, probable data dependence and overfitting. The findings, provide tourism stakeholders and policymakers with empirically validated forecasting tools for enhanced decision-making. The ensemble approach combined with statistical significance testing offers improved accuracy for investment planning, marketing budget allocation, and operational capacity management during economic volatility. Economic indicator integration enables proactive responses to market disruptions, supporting resilient tourism planning strategies and crisis management protocols.

Article activity feed