Mechanical Properties and Structural Design of PVA Fiber-Reinforced Cementitious Composites with Fly Ash Replacement for Natural Sand Aggregates

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper investigates nine PVA fiber-reinforced cementitious composites with varying fiber content (1–2.5%) and types (oil-coated and non-coated). The experimental compositions utilize locally available cement, high volumes of fly ash, silica fume, PVA fibers, and a superplasticizer, entirely omitting natural aggregates. Key parameters evaluated include bulk density, compressive strength, secant modulus of elasticity, flexural tensile strength, fracture energy, and structural design applicability. The results show that FRCs without natural aggregates achieves significantly lower densities (1500–1720 kg/m3). Compressive strength is influenced by matrix density, with the highest value recorded at 30.98 MPa. The high fly ash content reduces the secant modulus of elasticity, while flexural tensile strength follows a similar pattern to compressive strength. Oil-coated fibers generally lower fracture energy, except for the 1.5% PVA content, where the 2.5% composition performs best. All specimens exhibit tension softening rather than the strain-hardening behavior of ECCs. Structural design equations were developed, though experimental validation is necessary. The 2.5% PVA composition increases the compression zone height by 7% while requiring 2% more reinforcement. As a sustainable alternative to conventional concrete, the composites offer promising mechanical properties and structural viability for construction applications.

Article activity feed