Synthetizing 6G KPIs for Diverse Future Use Cases: A Comprehensive Review of Emerging Standards, Technologies, and Societal Needs
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The anticipated transition from 5G to 6G is driven not by incremental performance demands but by a widening mismatch between emerging application requirements and the capabilities of existing cellular systems. Despite rapid progress across 3GPP Releases 15–20, the current literature lacks a unified analysis that connects these standardization milestones to the concrete technical gaps that 6G must resolve. This study addresses this omission through a cross-release, application-driven review that traces how the evolution from enhanced mobile broadband to intelligent, sensing integrated networks lays the foundation for three core 6G service pillars: immersive communication (IC), everything connected (EC), and high-precision positioning. By examining use cases such as holographic telepresence, cooperative drone swarms, and large-scale Extended Reality (XR) ecosystems, this study exposes the limitations of today’s spectrum strategies, network architectures, and device capabilities and identifies the performance thresholds of Tbps-level throughput, sub-10 cm localization, sub-ms latency, and 10 M/km2 device density that next-generation systems must achieve. The novelty of this review lies in its synthesis of 3GPP advancements in XR, the non-terrestrial network (NTN), RedCap, ambient Internet of Things (IoT), and consideration of sustainability into a cohesive key performance indicator (KPI) framework that links future services to the required architectural and protocol innovations, including AI-native design and sub-THz operation. Positioned against global initiatives such as Hexa-X and the Next G Alliance, this paper argues that 6G represents a fundamental redesign of wireless communication advancement in 5G, driven by intelligence, adaptability, and long-term energy efficiency to satisfy diverse uses cases and requirements.