A Dual-Attention CNN–GCN–BiLSTM Framework for Intelligent Intrusion Detection in Wireless Sensor Networks
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Wireless Sensor Networks (WSNs) are increasingly being used in mission-critical infrastructures. In such applications, they are evaluated on the risk of cyber intrusions that can target the already constrained resources. Traditionally, Intrusion Detection Systems (IDS) in WSNs have been based on machine learning techniques; however, these models fail to capture the nonlinear, temporal, and topological dependencies across the network nodes. As a result, they often suffer degradation in detection accuracy and exhibit poor adaptability against evolving threats. To overcome these limitations, this study introduces a hybrid deep learning-based IDS that integrates multi-scale convolutional feature extraction, dual-stage attention fusion, and graph convolutional reasoning. Moreover, bidirectional long short-term memory components are embedded into the unified framework. Through this combination, the proposed architecture effectively captures the hierarchical spatial–temporal correlations in the traffic patterns, thereby enabling precise discrimination between normal and attack behaviors across several intrusion classes. The model has been evaluated on a publicly available benchmarking dataset, and it has been found to attain higher classification capability in multiclass scenarios. Furthermore, the model outperforms conventional IDS-focused approaches. In addition, the proposed design aims to retain suitable computational efficiency, making it appropriate for edge and distributed deployments. Consequently, this makes it an effective solution for next-generation WSN cybersecurity. Overall, the findings emphasize that combining topology-aware learning with multi-branch attention mechanisms offers a balanced trade-off between interpretability, accuracy, and deployment efficiency for resource-constrained WSN environments.