TSA-GRU: A Novel Hybrid Deep Learning Module for Learner Behavior Analytics in MOOCs

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

E-Learning is an emerging dominant phenomenon in education, making the development of robust models that can accurately represent the dynamic behavior of learners in MOOCs even more critical. In this article, we propose the Temporal Sparse Attention-Gated Recurrent Unit (TSA-GRU), a novel deep learning framework that combines TSA with a sequential encoder based on the GRU. This hybrid model effectively reconstructs student response times and learning trajectories with high fidelity by leveraging tthe emporal embeddings of instructional and feedback activities. By dynamically filtering noise from student interactions, TSA-GRU generates context-aware representations that seamlessly integrate both short-term fluctuations and long-term learning patterns. Empirical evaluation on the 2009–2010 ASSISTments dataset demonstrates that TSA-GRU achieved a test accuracy of 95.60% and a test loss of 0.0209, outperforming Modular Sparse Attention-Gated Recurrent Unit (MSA-GRU), Bayesian Knowledge Tracing (BKT), Performance Factors Analysis (PFA), and TSA in the same experimental design. TSA-GRU converged in five training epochs; thus, while TSA-GRU is demonstrated to have strong predictive performance for knowledge tracing tasks, these findings are specific to the conducted dataset and should not be implicitly regarded as conclusive for all data. More statistical validation through five-fold cross-validation, confidence intervals, and paired t-tests have confirmed the robustness, consistency, and statistically significant superiority of TSA-GRU over the baseline model MSA-GRU. TSA-GRU’s scalability and capacity to incorporate a temporal dimension of knowledge can make it acceptably well-positioned to analyze complex learner behaviors and plan interventions for adaptive learning in computerized learning systems.

Article activity feed