Establishing Models for Predicting Above-Ground Carbon Stock Based on Sentinel-2 Imagery for Evergreen Broadleaf Forests in South Central Coastal Ecoregion, Vietnam
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In Vietnam, models for estimating Above-Ground Biomass (AGB) to predict carbon stock are primarily based on diameter at breast height (DBH), tree height (H), and wood density (WD). However, remote sensing has increasingly been recognized as a cost-effective and accurate alternative. Within this context, the present study aimed to develop correlation equations between Total Above-Ground Carbon (TAGC) and vegetation indices derived from Sentinel-2 imagery to enable direct estimation of carbon stock for assessing emissions and removals. In this study, the remote sensing indices most strongly associated with TAGC were identified using principal component analysis (PCA). TAGC values were calculated based on forest inventory data from 115 sample plots. Regression models were developed using Ordinary Least Squares and Maximum Likelihood methods and were validated through Monte Carlo cross-validation. The results revealed that Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Near Infrared Reflectance (NIR), as well as three variable combinations—(NDVI, ARVI), (SAVI, SIPI), and (NIR, EVI — Enhanced Vegetation Index)—had strong influences on TAGC. A total of 36 weighted linear and non-linear models were constructed using these selected variables. Among them, the quadratic models incorporating NIR and the (NIR, EVI) combination were identified as optimal, with AIC values of 756.924 and 752.493, R2 values of 0.86 and 0.87, and Mean Percentage Standard Errors (MPSEs) of 22.04% and 21.63%, respectively. Consequently, these two models are recommended for predicting carbon stocks in Evergreen Broadleaf (EBL) forests within Vietnam’s South Central Coastal Ecoregion.