Chemical Changes During Hydrothermal Carbonization of Manure Derived from Free-Range Bred Chickens and Its Potential as Organic Fertilizer for Tomato, Lettuce and Sunflower Plants
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Hygienization by hydrothermal carbonization (HTC) of chicken manure (CM) at 250 °C allows its valorization as soil amendment or even organic fertilizer. To test if this hypothesis is also valid for feedstocks from free-range breeding, respective material of a small farm in southern Spain was comprehensively chemically characterized. The hydrochar of the manure collected from the ground of the farm was rich in mineral matter. After HTC, 68% of the organic carbon (C) was recovered, whereas 82% of the nitrogen (N) was lost most likely by volatilization and with the discarded process water. Despite this, 2.8% of the total N in the hydrochar was identified as inorganic N (Ni). Solid-state 13C and 15N NMR spectroscopy revealed aromatization of organic C and N, although alkyl C and amide N still contributed with 23% and 35% to the total organic C and N, respectively. The obtained distribution of N-forms indicated that enough Ni is plant-available for early plant growth, while the remaining N occurs in structures that can be slowly mobilized during advanced plant development. Low heavy metal concentrations suggest low phytotoxicity. Pot experiments with lettuce, sunflower, and tomato plants confirmed species- and dosage-dependent effects. A dosage of 3.25 t ha−1 improved lettuce and sunflower yields, whereas a dosage of 6.5 t ha−1 provided no additional growth benefits but caused phytotoxic reactions of the tomato plants. Our results support HTC as a strategy to valorize CM from free-range farms, although, due to the high variability of such materials, we recommend a thorough chemical characterization and phytotoxic tests before its application.