Phase-Specific Mixture of Experts Architecture for Real-Time NOx Prediction in Diesel Vehicles: Advancing Euro 7 Compliance

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The implementation of Euro 7 emission standards demands advanced real-time NOx monitoring systems for diesel vehicles. Existing unified models inadequately capture phase-dependent emission mechanisms during cold-start, urban, and highway operation. This study develops a novel Mixture of Experts (MoE) architecture with data-driven phase classification based on aftertreatment thermal dynamics. Real-world data from a Euro 6d commercial vehicle (3247 PEMS samples) were classified into three phases, cold (<70 °C coolant temperature), hot low-speed (<90 km/h), and hot high-speed (≥90 km/h), validated through t-SNE analysis (silhouette coefficient = 0.73). The key innovation integrates thermal–kinematic domain knowledge with specialized XGBoost regressors, achieving R2 = 0.918 and a 58% RMSE reduction versus unified models (RMSE = 1.825 mg/s). The framework operates within real-time constraints (1.5 ms inference latency), integrating autoencoder-based anomaly detection (95.2% sensitivity) and Model Predictive Control (11–13% NOx reduction). This represents the first systematic phase-specific NOx modeling framework with validated Euro 7 OBM compliance capability, providing both methodological advances in expert allocation strategies and practical solutions for next-generation emission control systems.

Article activity feed