Day-Ahead Dispatch Optimization of an Integrated Hydrogen–Electric System Considering PEMEL/PEMFC Lifespan Degradation and Fuzzy-Weighted Dynamic Pricing
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Integrated Hydrogen–Energy Systems (IHES) have attracted widespread attention; however, distributed energy sources such as photovoltaics (PV) and wind turbines (WT) within these systems exhibit significant uncertainty and intermittency, posing key challenges to scheduling complexity and system instability. As a core mechanism for the integrated operation of IHES, electricity price regulation can promote the absorption of renewable energy, optimize resource allocation, and enhance operational economy. Nevertheless, uncertainties in IHES hinder the formulation of accurate electricity prices, which easily lead to delays in scheduling responses and an increase in cumulative operating costs. To address these issues, this study develops lifespan models for Proton Exchange Membrane Electrolyzers (PEMELs) and Proton Exchange Membrane Fuel Cells (PEMFCs), constructs dynamic equations for the demand side and response side, and proposes a fuzzy-weighted dynamic pricing strategy. Simulation results show that, compared with fixed pricing, the proposed dynamic pricing strategy reduces economic indicators by an average of 15.3%, effectively alleviates energy imbalance, and optimizes the energy supply of components. Additionally, it reduces the lifespan degradation of PEMELs by 21.59% and increases the utilization rate of PEMFCs by 54.8%.