Optimization of Hydronic Heating System in a Commercial Building: Application of Predictive Control with Limited Data

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Optimizing building equipment control is crucial for enhancing energy efficiency. This article presents a predictive control applied to a commercial building heated by a hydronic system, comparing its performance to a traditional heating curve-based strategy. The approach is developed and validated using TRNSYS18 modeling, which allows for comparison of the control methods under the same weather boundary conditions. The proposed strategy balances energy consumption and indoor thermal comfort. It aims to optimize the control of the secondary heating circuit’s water setpoint temperature, so it is not the boiler supply water temperature that is optimized, but rather the temperature of the water that feeds the radiators. Limited data poses challenges for capturing system dynamics, addressed through a black-box approach combining two machine learning models: an artificial neural network predicts indoor temperature, while a support vector machine estimates gas consumption. Incorporating weather forecasts, occupancy scenarios, and comfort requirements, a genetic algorithm identifies optimal hourly setpoints. This work demonstrates the possibility of creating sufficiently accurate models for this type of application using limited data. It offers a simplified and efficient optimization approach to heat control in such buildings. The case study results show energy savings up to 30% compared to a traditional control method.

Article activity feed