Winglet Geometries Applied to Rotor Blades of a Hydraulic Axial Turbine Used as a Turbopump: A Parametric Analysis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Turbines are rotating machines that generate power by the expansion of a fluid; due to their characteristics, these turbomachines are widely applied in aerospace propulsion systems. Due to the clearance between the rotor blade tip and casing, there is a leakage flow from the blade pressure to the suction sides, which generates energy loss. There are different strategies that can be applied to avoid part of this loss; one of them is the application of so-called desensitization techniques. The application of these techniques on gas turbines has been widely evaluated; however, there is a lack of analyses of hydraulic turbines. This study is a continuation of earlier analyses conducted during the first stage of the hydraulic axial turbine used in the low-pressure oxidizer turbopump (LPOTP) of the space shuttle main engine (SSME). The previous work analyzed the application of squealer geometries at the rotor tip. In the present paper, winglet geometry techniques are investigated based on three-dimensional flowfield calculations. The commercial CFX v.19.2 and ICEM v.19.2 software were used, respectively, on the numerical simulations and computational mesh generation. Experimental results published by the National Aeronautics and Space Administration (NASA) and data from previous works were used on the computational model validation. The parametric analysis was conducted by varying the thickness and width of the winglet. The results obtained show that by increasing the winglet thickness, the stage efficiency is also increased. However, the geometric dimension of its width has minimal impact on this result. An average efficiency increase of 2.0% was observed across the entire turbine operational range. In the case of the squealer, for the design point, the maximum efficiency improvement was 1.62%, compared to the current improvement of 2.23% using the winglet desensitization technique. It was found that the proposed geometries application also changes the cavitation occurrence along the stage, which is a relevant result, since it can impact the turbine life cycle.